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Mass Measurements Using Isotopically Labeled Solvents Reveal the Extent of

Solvent Transport During Redox in Thin Films on Electrodes

Steven J. Lasky and Daniel A. Buttry

Department of Chemistry

University of Wyoming

Laramie, WY 82071

Abstract - Thin films of nickel ferrocyanide are grown at nickel electrode

surfaces by electrochemical oxidative treatment. This report describes some

new microgravimetric, quartz crystal microbalance (QCM) experiments using

isotopically substituted solvents which detail the transport of solvent during

the redox process of the Fe sites. The results show that solvent

incorporation accompanies cesium ion expulsion during oxidation, and vice

versa during reduction. The relationship between the numbers of moles of

expelled cesium ions and incorporated water molecules indicates that

considerable void space exists within the lattice of the reduced form of the

metallocyanide film as a result of a 'discreteness of size' effect. To our

knowledge, these experiments represent the first accurate, unambiguous

measurements of solvent transport in thin films on electrodes.
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Transport of solvent during the redox reactions of thin films on

electrodes has been identified as a possible influence on both the

thermodynamic and kinetic aspects of their electrochemical responses (1). A

variety of methods has been used in attempts to measure solvent content of

these films, including ellipsometry (2,3) and profilimetry (4). However,

those techniques which rely on measurement of thickness suffer from inability

to deconvolute the contriblitions to swelling (or deswelliiug) from ion and

solvent transport. Thus, the situation remains one in which speculation

abounds, but accurate measurements are unavailable. In this Communication, we

report on the application of the quartz crystal microbalance (QCM) technique

to the determination of solvent transport during redox in thin films of nickel

ferrocyanide (the nickel analog of Prussian Blue (5-12)) by comparing the

difference in the total mass change (comprised of contributions from both ion

and solvent transport) which results from use of isotopically substituted

solvent. To our knowledge, these experiments represent the first accurate,

unambiguous measurements of solvent transport in thin films on electrodes. It

is especially significant that these measurements are made in the presence of

simultaneous ion transport.

The QCM apparatus has been previously described (13-15). When used in

conjunction with electrochemical measurements, it allows for the simultaneous

determination of minute (multilayer to submonolayer) mass changes which

accompany the electrochemical reaction with a mass sensitivity of 56.6

Hz/microgram/cm 2 in the present experimental configuration. Nickel films were

deposited onto the QCM gold electrode either using a modified Watts bath (16)

or by vapor deposition with identical results. The nickel ferrocyanide films

were generated using the method of Bocarsly and coworkers (7), by maintaining

the electrode potential at 1.2 V in a solution of 0.1 M KCI and 0.01 M

K 4Fe(CN)6 for the time required to obtain the desired film thickness.

Conditions were precisely controlled to ensure uniformity of the deposited

films, since this is crucial for the quantitative comparison of the QCM

frequency change (which gives the mass change) to the electrochemical charge

(17). FTIR microscopy (Mattson Cygnus 100 with Bach-Shearer microscope) was

used to verify the film uniformity. Using a 10 micron spot size, the
-1

integrated intensity of the 2090 cm CN stretching band was measured at

several points across the face of the QCM electrode, with special attention

paid to the edge region. This procedure showed that the films were uniform to



within experimental error. Following film growth, the electrochemical and QCM

responses of the nickel ferrocyanide film were examined in 0.1 M CsC1

solutions prepared using either H 20 or D 20. The films were

electrochemically cycled for a sufficient period (usually ca. 10 minutes) to
+ .

ensure that all of the K ions from the growth solution had been exchanged for
+

Cs , as judged by the attainment of a constant QCM frequency for the reduced
+

film. No interference from K was observed after this procedure.

Figure I shows the results of such an experiment. Curves a and b in

Figure 1A show that the cyclic voltammetric response is identical in these two

solutions. The measured electrochemical charges are also identical,

indicating that the same number of Fe redox sites are electroactive in the two

solutions. The cyclic voltammetric response shown is typical of those

reported for these films in Cs+ containing electrolytes (6,7) with the

exception of a somewhat larger peak to peak separation, a reminder of the

sensitivity of these highly structured interfaces to the method of

preparation(7). Curves a and b in Figure lB show the QCM frequency response

for these two solutions, collected simultaneously with the electrochemical

data. The frequency increases during oxidation, and this increase is larger

in the H 20 solution than in the D 20 solution. When the experiment was

repeated in both D 20 and H 20 solutions of CsNO identical results were

obtained, providing unambiguous evidence that the observed frequency changes

do not depend on the anion of the supporting electrolyte in any way.

That the frequency increases during oxidation is not unexpected, based on

the earlier work of Bocarsly and coworkers (7,8). Their results indicated

that the Fe(Il) state of the films contained two cations per formula unit

(i.e. Cs2Ni[Fe(CN)6]) while the Fe(lIl) state contained one (i.e.

CsNi[Fe(CN)6 ]), so that oxidation should cause the expulsion of one cation per

formula unit to maintain electroneutrality. Thus, an increase in frequency

resulting from the expulsion of the cations during oxidation occurs. In

addition, the dependence of the frequency change on the mass of the solvent

implied some degree of solvent transport during the redox event for these

films. Quantitative comparison of the QCM frequency change with the

electrochemical charge reveals the extent of each.

Exactly one cation should be expelled per electron removed from the film

during oxidation. Direct comparison of the electrochemical charge and the QCM

frequency change revealed that the mass loss (frequency increase) which



occurred during the oxidation was not sufficient to account for all of the

expelled cations, i.e. a larger frequency change would have been observed if

the only transport during the redox process were cation expulsion in the

amount required to maintain electroneutrality. Thus, some mass must be

regained by the film during or following cation expulsion to give the observed

frequency change. If this mass were from solvent incorporation, then use of

D20 in place of H 20 would cause a detectable change in the observed frequency

increase. Figure 2 shows a sample calculation for a typical film based on

this hypothesis. Similar results were obtained for a variety of films with

varying thicknesses. For this film, the calculation using the total anodic

charge (2.9 x 10- 3 C/cm 2 ) indicated that a frequency increase of 224 Hz should

have been observed if the sole mass change were the expulsion of 3 x 10- 8

2 +
mole/cm of Cs . The observed frequency increases in D 20 and H 20 were 115 and

125 Hz, respectively. The discrepancies between the calculated and observed

values in D 20 and H 20 were thus 109 and 99 Hz, respectively. (Given the

signal to noise ratio of the measurement, the minimum detectable frequency

difference is ca. 0.5 Hz.) If the entire discrepancy between the calculated

frequency increase for Cs+ and that observed experimentally were due to a net

increase in the solvent content of the film, then the discrepancy for the D2 0

case should have been 10% larger than that for the H20 case because the molar

mass of D20 is larger than that of H 20 by 10%. This is exactly what was

observed. The agreement is quantitative, and the requirement that the

difference between the calculated mass gain due to D 20 and H 20 be 10% serves

as an internal check of the veracity of the calculations and underlying

assumptions. One such assumption is that D20 and H 20 behave in chemically

identical manners so that identical numbers of moles of each are transported

during the two experiments shown in Figure 1. A most important assumption,

crucial to the use of the frequency change in quantitative calculations

(14,15), is that the film behave as a rigid layer so that the frequency change

may be linearly related to the mass change. The excellent agreement presented

above is unambiguous evidence of this. Feldman and Melroy (18) have

previously reported rigid layer behavior for Prussian Blue films. In their

study qualitative evidence for solvent transport during redox was observed.

The picture which emerges for the cesium case is that during oxidation
+ .

some Cs ions are expelled with a consequent influx of solvent to fill the

void volume left within the lattice. During reduction, the species undergo



transport in the opposite direction, with complete reversibility of the mass

changes. These data show that 3.2 moles of H20 are incorporated when 1 mole
+

of Cs ions is expelled. Approximate molar volumes for the twu species are 1833

cm /mole (from the bulk density of water) and 12 cm 3/mole (from the ionic

radius of Cs+ of 0.169 nm given by Pauling (19)), so at first glance it seems

that expulsion of one mole of Cs+ should allow for accommodation of only 0.67

mole of H20. Thus, either the effective volume of Cs+ within the lattice is

considerably larger than its ionic radius would indicate, or the effective

volume of a water molecule within the lattice is considerably smaller than it

is in bulk water or some combination of the two. Since it is unreasonable to

postulate a water density within the lattice which is enough larger (by a

factor of nearly 5!) than the bulk value to account for the discrepancy, we

attribute the majority of the effect to a much larger effective volume for
++

Cs . Geometric arguments based on the sizes of Cs and H2 0 in relation to the

size of the octahedral cavity (10,20-22) can be made which are in agreement

with this conclusion. Briefly, even though the Cs+ cation does not completely

fill the cubic cavity (which is 0.5 nm on a side (10,20-22)), it is just large

enough to preclude the presence of water molecules. Thus, void space is left

within the cavity which does not have the proper geometry to accommodate the

incorporation of interstitial water. A more detailed description of this

'discreteness of size' effect will be reported in a future contribution, along

with a discussion of the insight provided by such measurements of solvent

transport into the remarkable sensitivity of the formal potential of these

nickel ferrocyanide films to the identity of the presence of various alkali

metal cations.
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FIGURE CAPTIONS

Figure 1 - A) a. Cyclic voltammogram of a nickel ferrocyanide film in 0.1 M

CsCl/H 20 solution. Scan rate - 100 mV/s. b. Same as in (a) except that the

solution contains D2 0 instead of H20. B) a. QCM frequency response measured

simultaneously with the cyclic voltammogram in (a). b. QCM frequency response

measured with cyclic voltammogram in (b).

Figure 2 - Schematic representation of the frequency changes measured during

the cyclic voltammogram in Figure 1. See text for details.
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